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Lecture 1

Two body central 

Force Problem



4.1 Introduction

▪ One of the most important problems of
classical mechanics is to understand the
motion of a body moving under the
influence of a central force field.

▪ Force which is always directed towards the
centre or line joining two bodies

▪ The motion of the planets around the sun.
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▪ Motion of satellites around the earth

▪ Motion of two charge particles with
respect to each other

▪ In this chapter, we study the two-
body problem, which is reduced to
an equivalent one-body problem.
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2) Unbound motion

The distance between two particles or 
bodies is infinite at initial and final stage. 

The bodies move from infinite distance and 
approach to interact in close proximity and 
finally move far from each other to an 
infinite distance. 

For example, scattering of alpha particles 
by gold nuclei as studied by Rutherford. 

The motion of a particle in central force

field can be classified as;

1) Bound motion

The distance between two bodies never

exceeds a finite limit,

e.g. motion of planets around the sun.



▪ It is always possible to reduce the motion of two bodies to that 
of an equivalent single-body problem.

▪ The exact solution and understanding of two bodies motion 
problem is possible. 

▪ However, the presence of the third body complicates the 
situation and an exact solution to the problem become an 
impossibility.

▪ Therefore, on must adopt the approximate methods to solve the 
many bodies problem. 

▪ We can always reduce many body systems to a two-body 
problem either by neglecting the effects of the others or by 
some other screening methods, where the effects of the other 
bodies don’t play prominent role. 

▪ Such as the motion of a planets around the sun, where the effect 
due to the presence of other planets is neglected. However, we 
will restrict ourselves to the two bodies problem only.



Consider the motion of two particles. Let F(ext) be the total external force

acting on the system. Let Fint be the total internal force due to the

interaction between two particles.

Total external force will be

𝑭𝒆𝒙𝒕 = 𝑭𝟏
𝒆𝒙𝒕 + 𝑭𝟐

𝒆𝒙𝒕 (4.1.1)

Further according to the Newton’s 3rd law

𝑭𝟏𝟐
𝒊𝒏𝒕 = −𝑭𝟐𝟏

𝒊𝒏𝒕` (4.1.2)

Action and reaction forces.

If the action and reaction forces are same Why only apple falls for earth?



The equations of motion can be written as

Force on Particle 1

𝑚1 ሷ𝒓𝟏 = 𝑭𝟏
𝒆𝒙𝒕 + 𝑭𝟏𝟐

𝒊𝒏𝒕 (4.1.3)

Force on Particle 2

𝑚2 ሷ𝒓𝟐 = 𝑭𝟐
𝒆𝒙𝒕 + 𝑭𝟐𝟏

𝒊𝒏𝒕 (4.1.4)

Total force on system of Particles
𝑭𝒆𝒙𝒕 = 𝑀 ሷ𝑹 (4.1.5)

Total mass of the system
𝑀 = 𝑚1 +𝑚2 (4.1.6)

Position vector of the centre of mass of the

system is

▪ 𝑹 =
𝑚1𝒓𝟏+𝑚2𝒓𝟐

𝑚1+𝑚2
(4.1.7)



Position vector of particle 1 relative to particle 2 be

𝒓 = 𝒓𝟏 − 𝒓𝟐 (4.1.8)
𝒓𝟏 = 𝒓 + 𝒓𝟐 (4.1.9)

Putting in Eq. (4.1.9) in Eq. (4.1.7)

𝒓𝟐 = 𝑹−
𝑚1𝒓

𝑚1+𝑚2
(4.1.10)

Similarly, Eq. (4.1.8) can be written as

𝒓𝟐 = 𝒓𝟏 − 𝒓 (4.1.11)

Putting in equation (4.1.11) in equation (4.1.7)

𝒓𝟏 = 𝑹+
𝑚2𝒓

𝑚1+𝑚2
(4.1.12)

Multiplying Eq. (4.1.3) by m2 & Eq. (4.1.4) by m1 and subtracting, 

𝑚1𝑚2 ሷ𝒓𝟏 − ሷ𝒓𝟐 = 𝑚2𝑭𝟏𝟐
𝒊𝒏𝒕 −𝑚1𝑭𝟐𝟏

𝒊𝒏𝒕 +𝑚1𝑚2
𝑭𝟏
𝒆𝒙𝒕

𝑚1
−

𝑭𝟐
𝒆𝒙𝒕

𝑚2



Dividing the above equation by (𝑚1 +𝑚2) and using  𝑭𝟏𝟐
𝒊𝒏𝒕 = −𝑭𝟐𝟏

𝒊𝒏𝒕

𝑚1𝑚2

(𝑚1+𝑚2)
ሷ𝒓𝟏 − ሷ𝒓𝟐 =

(𝑚1+𝑚2)

(𝑚1+𝑚2)
𝑭𝟏𝟐
𝒊𝒏𝒕 +

𝑚1𝑚2

(𝑚1+𝑚2)

𝑭𝟏
𝒆𝒙𝒕

𝑚1
−

𝑭𝟐
𝒆𝒙𝒕

𝑚2

⇒ 𝜇 ሷ𝒓𝟏 − ሷ𝒓𝟐 = 𝑭𝟏𝟐
𝒊𝒏𝒕 + 𝜇

𝑭𝟏
𝒆𝒙𝒕

𝑚1
−

𝑭𝟐
𝒆𝒙𝒕

𝑚2
(4.1.13)

Where 𝜇 is reduce mass of the system.

𝜇 =
𝑚1𝑚2

(𝑚1+𝑚2)
=

1

𝑚1
+

1

𝑚2
(4.1.14)



Special case

If no external force is acting

𝑭𝟏
𝒆𝒙𝒕 = 𝑭𝟐

𝒆𝒙𝒕 = 𝟎 (A)

equation (4.1.13) will be reduced to

⇒ 𝜇 ሷ𝒓𝟏 − ሷ𝒓𝟐 = 𝑭𝟏𝟐
𝒊𝒏𝒕

⇒ 𝜇 ሷ𝒓 = 𝑭𝟏𝟐
𝒊𝒏𝒕 (4.1.15)a

If the forces produce same acceleration

𝑭𝟏
𝒆𝒙𝒕

𝒎𝟏
=

𝑭𝟐
𝒆𝒙𝒕

𝒎𝟐
⇒ ሷ𝒓𝟏 = ሷ𝒓𝟐 (B)

The condition B is realized if centre producing the external forces is at a

considerable distance from the system and the force due to it on any mass

is proportional to that of the mass.

Such as gravitational force. In Earth-moon mutual motion, force due to the

sun is assumed such that it satisfy the condition mentioned in Eq. B.



Equation will be reduced to

⇒ 𝜇 ሷ𝒓𝟏 − ሷ𝒓𝟐 = 𝑭𝟏𝟐
𝒊𝒏𝒕

⇒ 𝜇 ሷ𝒓 = 𝑭𝟏𝟐
𝒊𝒏𝒕 (4.1.15)b

Eq. (4.1.15)b represent motion of a particle of mass equal 𝜇 and moving

under the action of force 𝑭𝟏𝟐
𝒊𝒏𝒕.

The reduction is equivalent to replace the system of two bodies by a mass

𝜇 and considering the acceleration produced is due to the internal force.

Eq. (4.1.15)a (𝜇 ሷ𝒓 = 𝑭𝟏𝟐
𝒊𝒏𝒕 ) together with Eq. (4.1.5) (𝑭𝒆𝒙𝒕 = 𝑀 ሷ𝑹 )

represents the motion of a two body system under the action of internal and

external forces as long as the conditions mentioned in equations A & B are

valid.

If the internal forces are attractive and these are the only forces acting on

the system, the two bodies move around the centre of mass which acts as

centre of force. i.e. directed towards the centre.



Condition on mass

If the mass of one of the particles is extremely large as compared to that of

the other, say m1 >> m2, then the reduced mass is simply

𝜇 =
𝑚1𝑚2

(𝑚1+𝑚2)
=

𝑚1𝑚2

𝑚1(1+ ൗ
𝑚2

𝑚1)

⇒ 𝜇 =
𝑚2

(1+ ൗ
𝑚2

𝑚1)
as Τ𝑚2

𝑚1 ≈ 0

⇒ 𝜇 = 𝑚2

In this case the centre of mass of the system coincides with the centre of

mass of the heavier body.

This approximation is equivalent to neglecting the recoil of mass m1. This

is used in Bohr’s theory of hydrogen atom and motion of satellites around

the earth. It can be assumed for the motion of earth around the Sun.



Since mass m1>>m2,

acceleration in mass m1

𝒂𝟏 =
𝑭𝟐𝟏
𝒊𝒏𝒕

𝒎𝟏
≈ 𝟎

acceleration in mass m2

𝒂𝟐 =
𝑭𝟐𝟏
𝒊𝒏𝒕

𝒎𝟐
> 𝟎

That’s is why

“An apple appears to fall towards the earth and not 

the earth towards the apple”.



If 𝑈 𝒓, ሶ𝒓 is the function of “𝒓”and higher derivative of “ ሶ𝒓”. Then Lagrangian of

the system can be written as

𝐿 = 𝑇 ሶ𝑹, ሶ𝒓 − 𝑈 𝒓, ሶ𝒓 (4.1.16)

Where 𝑇 ሶ𝑹, ሶ𝒓 = Τ1 2𝑀 ሶ𝑹𝟐 + 𝑇′ = Τ1 2 (𝑚1+𝑚2) ሶ𝑹
𝟐 + 𝑇′ (4.1.17)

And 𝑇′ =
1

2
𝑚1 ሶ𝒓1

′ 𝟐 +
1

2
𝑚2 ሶ𝒓𝟐

′ 𝟐 (4.1.18)

Where 𝒓𝟏
′ = 𝒓𝟏 − 𝑹

⇒ 𝒓1
′= 𝒓𝟏 −

𝑚1𝒓𝟏+𝑚2𝒓𝟐

𝑚1+𝑚2
=

𝑚2 𝒓𝟏−𝒓𝟐

𝑚1+𝑚2

⇒ 𝒓1
′=

𝑚2

𝑚1+𝑚2
𝒓 (4.1.19)

Similarly, 𝒓2
′ = 𝒓𝟐 − 𝑹

⇒ 𝒓𝟐
′= 𝒓𝟐 −

𝑚1𝒓𝟏+𝑚2𝒓𝟐

𝑚1+𝑚2
= −

𝑚1 𝒓𝟏−𝒓𝟐

𝑚1+𝑚2

⇒ 𝒓𝟐
′= −

𝑚1

𝑚1+𝑚2
𝒓 (4.1.20)

Lagrangian of the System



Therefore, the kinetic energy from Eq (4.1.18) can be written as

𝑇′ =
1

2
𝑚1

𝑚2

𝑚1+𝑚2
ሶ𝒓
𝟐
+

1

2
𝑚2 −

𝑚1

𝑚1+𝑚2
ሶ𝒓
𝟐

⇒ 𝑇′ =
1

2
𝑚2 +𝑚1

𝑚1𝑚2

𝑚1+𝑚2
2 ሶ𝒓𝟐

⇒ 𝑇′ =
1

2

𝑚1𝑚2

𝑚2+𝑚1
ሶ𝒓𝟐 (4.1.21)

The Lagrangian of the system can be written as;

𝐿 = 𝑇 ሶ𝑹, ሶ𝒓 − 𝑈 𝒓, ሶ𝒓

𝐿 = Τ1 2 𝑚1 +𝑚2
ሶ𝑹𝟐 +

1

2

𝑚1𝑚2

𝑚1+𝑚2
ሶ𝒓𝟐 − 𝑈 𝒓, ሶ𝒓

𝐿 = Τ1 2𝑀 ሶ𝑹𝟐 +
1

2
𝜇 ሶ𝒓𝟐 − 𝑈 𝒓, ሶ𝒓 (4.1.22)

Where M is the total mass of the system and 𝜇 is the reduce mass of the

system.

Lagrangian of the System



4.2.1a Under the central force, the angular momentum of the particle

is conserved

a. In cartesian coordinates

The Torque on the system (if any) can be written as; 𝑵 = 𝒓 × 𝑭 (4.2.1)

and the angular momentum of the body is l= 𝒓 × 𝑷 (4.2.2)

We know that;
𝒅l
𝒅𝒕
= 𝑵 (4.2.3)

Since the force acting on the body is central force and always directed

towards the line joining the body with the centre therefore

𝑵 = 𝒓 × 𝑭 = 𝑟 Ƹ𝑟 × 𝐹𝑟 Ƹ𝑟 = 𝑟𝐹𝑟 Ƹ𝑟 × Ƹ𝑟 = 0 (4.2.4)

⇒
𝒅l
𝒅𝒕
= 𝑵 = 𝟎 ⇒ l = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.2.5)

Eq.(4.2.4) & (4.2.5) suggests that the total torque “𝑵” acting on the system

will be zero and angular momentum “𝑳” of the body will be constant.

4.2 Properties of central Force



4.2 Properties of central Force

b. In Polar coordinates

𝑭 = 𝐹𝑟 Ƹ𝑟 + 𝐹𝜃 መ𝜃 (4.2.6)

And similarly, the torque acting on a particle in polar coordinates is

𝑵 = 𝒓 × 𝑭 = 𝑟 Ƹ𝑟 × 𝜇 ሷ𝑟 − 𝑚𝑟 ሶ𝜃2 Ƹ𝑟 + 𝜇𝑟 ሷ𝜃 + 2𝜇 ሶ𝑟 ሶ𝜃 መ𝜃

⇒ 𝑵 = 𝑟 𝜇 ሷ𝑟 − 𝜇𝑟 ሶ𝜃2 Ƹ𝑟 × Ƹ𝑟 + 𝑟 𝜇𝑟 ሷ𝜃 + 2𝜇 ሶ𝑟 ሶ𝜃 Ƹ𝑟 × መ𝜃

⇒ 𝑵 = 0 + 𝑟 𝜇𝑟 ሷ𝜃 + 2𝜇 ሶ𝑟 ሶ𝜃 Ƹ𝑟 × መ𝜃

⇒ 𝑵 = 𝜇𝑟2 ሷ𝜃 + 2𝜇𝑟 ሶ𝑟 ሶ𝜃 ො𝑛 where ො𝑛 is ⏊ to both Ƹ𝑟 and መ𝜃

⇒ 𝑵 =
𝑑

𝑑𝑡
𝜇𝑟2 ሶ𝜃 ො𝑛 (4.2.7)

For Radial force, the angular part of the force is zero

𝑵 =
𝑑l
𝑑𝑡
= 0 ⇒ l = 𝜇𝑟2 ሶ𝜃 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.2.8)

Note: Also l= 𝒓 × 𝑷 = 𝒓 × 𝜇𝒗 = 𝒓 × 𝜇𝑟𝝎 = 𝒓 × 𝜇𝑟 ሶ𝜽 ⇒ 𝑳 = 𝜇𝑟2 ሶ𝜃



4.2.2 The path of a particle moving under the central force must be

a Plane

Consider the central force 𝑭 = 𝐹𝑟 Ƹ𝑟 (4.2.9)

Taking cross product with radius vector of above equation

𝒓 × 𝑭 = 𝒓𝐹𝑟 Ƹ𝑟 × Ƹ𝑟 = 0

⇒ 𝒓 × 𝑭 = 𝒓 × 𝜇
𝑑𝒗

𝑑𝑡
= 0

⇒ 𝒓 × 𝜇
𝑑𝒗

𝑑𝑡
= 𝜇

𝑑

𝑑𝑡
𝒓 × 𝒗 = 0

⇒
𝑑

𝑑𝑡
𝒓 × 𝒗 = 0 (4.2.10)

Integrating above equation 𝒓 × 𝒗 = 𝒒 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.2.11)

Since the vector “𝒒” is perpendicular to both “𝒓” and “𝒗”is zero

𝒓 ∙ 𝒓 × 𝒗 = 𝒓 ∙ 𝒒 = 0

Therefore, the particle is in Plane.

4.2 Properties of central Force



If the body move from position “A” to position “𝐴′” and cover and angular

displacement of “𝑑𝜃” and arc length “𝑟𝑑𝜃”.

The area of Triangle ∆𝐴𝑂𝐴′in given figure is

𝑑𝑨 =
1

2
𝒓 × 𝑟𝑑𝜽 =

1

2
𝑟 Ƹ𝑟 × 𝑟𝑑𝜃 መ𝜃

𝑑𝑨 =
1

2
𝑟2𝑑𝜃 ො𝑛 (4.2.12)

𝑑𝑨

𝑑𝑡
=

1

2
𝑟2

𝑑𝜃

𝑑𝑡
ො𝑛

Multiplying both sides with mass “𝜇” of the body

𝜇
𝑑𝑨

𝑑𝑡
=

1

2
𝜇𝑟2

𝑑𝜃

𝑑𝑡
ො𝑛 =

1

2
𝜇𝑟2 ሶ𝜃 ො𝑛

𝜇
𝑑𝑨

𝑑𝑡
=

1

2
l

𝑑𝑨

𝑑𝑡
=

1

2𝜇
l = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 (As required)

4.2.3 The Areal velocity of the body under the central force is constant OR

The position vector of particle drawn from the origin sweeps equal area in

equal interval of times. OR The rate of change of area is constant.

4.2 Properties of central Force


